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Abstract 

 

Given that scientific practices contribute to the climate crisis, scientists should reflect 

on the planetary impact of their work. Research computing can have a substantial carbon 

footprint in cases where researchers employ computationally expensive processes with large 

amounts of data. Analysis of human neuroimaging data, such as Magnetic Resonance 

Imaging brain scans, is one such case. Here, we consider ten ways in which those who 

conduct human neuroimaging research can reduce the carbon footprint of their research 

computing, by making adjustments to the ways in which studies are planned, executed, and 

analysed; as well as where and how data is stored. 
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1. Introduction 

 

We are in the midst of a climate crisis, with exponentially increasing rates of carbon 

emissions leading to increases in global temperatures. This in turn leads to an increased 

incidence of natural disasters, including floods, fires, and droughts, as well as a loss of 

biodiversity (IPCC, 2022). Given that the technological path to removing carbon from the 

atmosphere remains unclear (Carton et al., 2020), and the benefits of carbon offsetting 

schemes are dubious (Watt, 2021), real-term reductions in emissions will be needed to 

combat this crisis.  

As data literate individuals with power over the design of research paradigms and the 

dissemination of knowledge, researchers should reflect on the carbon footprint of their work. 

One may ask where responsibilities should lie. All actors in the research ecosystem, including 

governments, institutions, journals, funders, researchers, and data hosts have a role in 

incentivising and supporting research practices that promote reductions in carbon emissions 

(Farley, 2022; Lannelongue et al., 2023; Urai & Kelly, 2023)1. While systemic changes are 

undoubtedly critical, climate conscious researchers should also take initiative through 

collective action for two important reasons. First, as practising scientists, we have a much 

deeper understanding of our own research processes than governing bodies, and are therefore 

well placed to address their impacts. Second, by doing so, we create a social mandate for 

change with governing bodies. Given there are often barriers to individuals making 

meaningful change in the face of institutional incentive structures, acting in the domains 

where we are empowered to act can help in pushing our institutions further. One such domain 

is research computing. 

In many fields, researchers rely heavily on computing. The information 

communication technology (ICT) sector accounts for an estimated 1.8-3.9% of global CO2 

emissions, largely accounted for by electricity production (Freitag et al., 2021). Although a 

small percentage in absolute terms, it is likely to continue growing as we process and store 

increasing amounts of data. This has become more pertinent in recent years with increasing 

adoption of large models trained through artificial intelligence (Selvan et al., 2022). Belkhir 

and Elmeligi (2018) estimated data centre energy use to account for 45% of the greenhouse 

 
1 Indeed, recent reports from research funders demonstrate interest in this topic, Wellcome; 

https://wellcome.org/reports/advancing-environmentally-sustainable-health-research, UKRI; 

https://zenodo.org/record/8199984 

 

https://wellcome.org/reports/advancing-environmentally-sustainable-health-research
https://zenodo.org/record/8199984
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gas emissions produced within the ICT sector in 2020, up from 33% in 2010. Despite this, the 

amount of data being collected and processed is relatively neglected in climate policies and 

initiatives concerning data-driven health research (Samuel & Lucassen, 2022). We therefore 

urgently need to establish and use best practices for greener computing moving forward. Such 

initiatives are already being taken in some compute-heavy fields, including bioinformatics 

(Grealey et al., 2022), machine learning (Selvan et al., 2022), and astronomy (Portegies 

Zwart, 2020).  

Despite initiatives in other disciplines, there has been little attention so far to the 

computing carbon footprint of human neuroimaging research. This is another compute heavy-

field which frequently relies on computationally expensive data processing and analysis. 

Fortunately, there is scope to reduce this footprint by ‘computing carefully’ (Rae et al., 2022) 

– reducing a project’s required computing power and, therefore, energy production. Here, we 

outline several factors that contribute to the energy required for computing in human 

neuroimaging, and provide ten recommendations for how researchers can reduce these costs 

(summarised in Box 1). There are a number of other ways in which neuroimaging research 

contributes to the climate crisis, including through the procurement of specialist equipment, 

extraction of experimental resources (such as liquid helium for MRI scanning), and frequent 

flights to international conferences (Aron et al., 2020; Zak et al., 2020). Methods for reducing 

the carbon footprint of these aspects are beyond the scope of this paper (but see Rae et al., 

2022). In coming years, advances in artificial intelligence may supplement neuroimaging data 

processing in ways that modulate its carbon footprint – this is also beyond the scope of this 

present paper. 
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Box 1. Summary of ten recommendations for reducing the carbon footprint of 

neuroimaging computing 

 

1. Preregister a study analysis plan in order to avoid repetitions 

2. Quantify and report the carbon footprint of your computing using available carbon 

tracking tools 

3. Only run the preprocessing and analysis steps that you need 

4. Run your computing at lower carbon intensity times and in lower carbon intensity 

locations 

5. Regularly remove files that you do not need 

6. Plan where, and for how long, you will store files, aided by research technicians 

7. Advocate for non-commercial and centralised data storage solutions 

8. Publicly share sufficient data to ensure it is FAIR (Findable, Accessible, 

Interoperable, Reusable), but consider the extent of what others will actually need 

or use 

9.  Make use of existing preprocessed data when possible, instead of acquiring and 

processing new data 

10.  Discuss the importance of greener computing with other neuroimagers and 

advocate for systemic change 
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2. Recommendations 

 

2.1. Plan and preregister analysis 

 

Unnecessary repetitions of data analysis represent a waste of energy consumption and 

should be avoided. Here, we are not referring to replication studies of existing paradigms – 

these are important in increasing the credibility of science (Open Science Collaboration, 

2015). Instead, we are referring to repetitions that occur as the result of unforeseen obstacles. 

For example, neuroimagers may run analysis for multiple participants, only to discover that 

results are unusable due to fundamental issues with event timing files (e.g., for fMRI) or 

missing data. Historically, neuroimagers may have also tweaked analysis pipelines to identify 

the settings that produced the ‘best’ (i.e., most statistically significant) results. Such 

repetitions not only contribute to increased carbon emissions, but can also be inconsistent 

with good research practices. Both issues can be addressed through preregistration of your 

plan for data collection, preprocessing, and analysis. Preregistration involves uploading a 

detailed study plan to an online repository (e.g., Open Science Framework (OSF); 

https://osf.io/registries, AsPredicted; https://aspredicted.org) before data has been collected 

and/or analysed. Doing so can increase the credibility of your research by clearly delineating 

between confirmatory and exploratory analyses and providing evidence against suspicions of 

having ‘p-hacked’ significant results (Gorgolewski & Poldrack, 2016). While writing a 

preregistration can be initially time consuming, engaging with this process has downstream 

benefits such as increasing confidence in methods used and improving the efficiency of the 

analysis stage, thereby reducing the need for unnecessary repetitions and computing. In cases 

where further exploratory analysis is needed, we recommend that one designs and tests 

analysis pipelines on a single subject before applying them to the entire sample. This will 

help with the elimination of code bugs, reducing the amount of unnecessary repetitions and 

therefore energy use. 

Suggested Action: Preregister a study analysis plan in order to avoid repetitions 

 

https://osf.io/registries
https://aspredicted.org/
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2.2. Track your emissions 

 

In recent years, several tools have been developed to systematically track and quantify 

carbon emissions associated with computational processes. For example, Green Algorithms 

(Lannelongue et al., 2021; https://www.green-algorithms.org) is an online calculator that 

allows users to input parameters for a given job including runtime, number of cores, and 

available memory, in order to generate estimates of resulting carbon emissions before a job 

has started running. This calculator also takes the location of computing into account, given 

that carbon intensity of energy use will vary by country (see Recommendation 4). It also 

provides the server-side tool ‘GA4HPC’, which uses log information to estimate carbon 

emissions for jobs utilising high performance computing (HPC). Other packages, such as 

CodeCarbon (Goyal-Kamal et al., 2021; https://codecarbon.io) and Carbontracker (Anthony 

et al., 2020; https://github.com/lfwa/carbontracker) can be embedded directly into existing 

tools, allowing researchers to estimate carbon emissions without manually inputting 

parameters. Again, both packages consider the location of computing, and Carbontracker 

even makes use of real-time carbon intensity data for a given country, when possible. Recent 

experiments have shown that these tools provide sensible estimates of energy usage and 

carbon footprints (Jay et al., 2023).  

As of version 22.1.0 (December 12th, 2022), the fMRI preprocessing pipeline 

fMRIPrep (Esteban et al., 2019) has had CodeCarbon integrated into its code (see 

https://fmriprep.org/en/stable/changes.html#december-12-2022). Simply by toggling on a 

‘track-carbon’ flag and providing a relevant ‘country-code’ (e.g., GBR for United Kingdom) 

in the command line, fMRIPrep users are provided estimates of carbon emissions for the 

preprocessing of a given participant. There are strengths and weaknesses to online 

calculators, server-side tools, and embedded packages, and the ideal solution for a given 

neuroimager will depend on these factors (Lannelongue & Inouye, 2023). For example, 

embedded packages allow automatic collection of computing metrics but are not necessarily 

compatible with all programming languages, while the reverse is true for online calculators. 

Whichever approach you use, estimating the carbon footprint of analysis or preprocessing is a 

good first step to understand the carbon emissions associated with your research computing 

(Henderson et al., 2020; Lannelongue et al., 2023). Small-scale experimentation including 

manipulations of analysis or preprocessing parameters in conjunction with carbon tracking 

https://www.green-algorithms.org/
https://codecarbon.io/
https://github.com/lfwa/carbontracker
https://fmriprep.org/en/stable/changes.html#december-12-2022
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(see Recommendation 3) may further allow researchers to understand which elements of their 

research computing particularly tax energy usage. 

Beyond this, we recommend neuroimagers (and other compute-heavy researchers) 

provide an ‘Environmental impact statement’ in published papers – openly reporting the 

carbon footprint of their project in kilograms of carbon dioxide equivalent emissions (CO2eq; 

Rae et al., 2022). For particularly compute-heavy projects, this will involve using carbon 

trackers to provide estimates of the carbon footprint of data processing, whenever available. 

Box 2 provides an example of the form such a statement could take, based on one pipeline of 

an ongoing preregistered study focusing on the carbon footprint of fMRI preprocessing (see 

Recommendation 3). 

 

Box 2. A sample ‘Environmental footprint statement’ for a neuroimaging study 

 

 

“Preprocessing data for the 257 subjects in the current experiment in fMRIPrep 

produced an estimated 4.46 kg of carbon dioxide equivalent emissions (CO2eq), as 

determined using an in-house server-side tool (using the same approach as in GA4HPC at 

https://www.green-algorithms.org). Computing was conducted in the southeast of England, 

with estimated carbon intensity of 193.38 grams of CO2 per kilowatt hour 

(http://www.carbonfootprint.com).” 

 

This approach has already been taken by researchers in compute-heavy fields (e.g., 

Lannelongue & Inouye, 2022; Xu et al., 2023), and a comprehensive framework for reporting 

these figures is provided by the Scientific CO2nduct initiative (Sweke et al., 2022; 

https://scientific-conduct.github.io). We encourage researchers to be transparent and 

pragmatic in reporting this figure. Accurate and representative estimates will allow for 

synthesis across studies, facilitating a better understanding of which elements of 

neuroimaging data processing may have a particularly large footprint, and what can be done 

to reduce this footprint. The adoption of this practice could mirror that of the ‘Data 

availability statement’, a relatively recent open science initiative that is now culturally 

accepted within the life sciences, and expected by many journals for the publication of 

papers. 

https://www.green-algorithms.org/
http://www.carbonfootprint.com/
https://scientific-conduct.github.io/
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Suggested Action: Quantify and report the carbon footprint of your computing using 

available carbon tracking tools 

 

2.3. Preprocess conservatively 

 

When working with raw neuroimaging data, preprocessing is a necessary but 

computationally expensive process. fMRI preprocessing steps include brain extraction, 

registration, smoothing, and denoising (Caballero-Gaudes & Reynolds, 2017). EEG steps 

include noise and artefact removal, elimination of bad channels, and re-referencing (Kim, 

2018). Following previous lab procedures using existing scripts can be a reliable way to 

produce good quality data through a pipeline that runs without error. However, doing so often 

means that redundant steps are performed which have little or no impact on the final product. 

From our own experience, existing lab scripts for fMRIPrep have included registration of 

BOLD data to multiple output spaces and the creation of CIFTI files (storing connectivity 

data), despite the fact that these files are frequently not used in subsequent analyses. While it 

may feel useful to store such files ‘just in case’, it is possible to reduce compute and runtime 

for your preprocessing by carefully planning which files you will need prior to starting a 

project. Aspects of analysis may similarly use unnecessary compute. For instance, 

independent component analysis (ICA) denoising of fMRI data is a computationally lengthy 

process. While often beneficial in producing higher sensitivity to statistical results, it can 

operate with varying degrees of success (Scheel et al., 2022). In the absence of good 

theoretical motivations to conduct steps such as ICA denoising, one should consider which 

aspects of analysis are necessary.  

The scope for meaningful reductions in emissions during job execution will also be 

impacted by the baseline energy consumption of HPC cluster nodes when idling (not in use). 

For example, when examining energy costs of running a large language model, Luccioni et 

al. (2022) found only 54.5% of energy use to be attributable to running code, 13.5% to 

infrastructure including storage and cooling, and 32% to idling costs needed to keep nodes on 

regardless of whether code was running on them. Reduction of these costs will likely rely on 

advances in hardware.  

Even within energy costs associated with running a job, it can be challenging for end 

users to know in advance which preprocessing and analysis steps have meaningful versus 



10 

negligible effects on compute, as there is a lack of systematic investigation into this question. 

In the absence of empirical data, researchers may rely on the assumption that individual 

preprocessing steps that take a particularly long time to complete require particularly 

intensive compute power. To provide a more systematic estimate, in an ongoing preregistered 

study (https://osf.io/839pa), we are evaluating the effect of different fMRIPrep parameters on 

both performance (in analytical sensitivity) and the carbon footprint of preprocessing. Similar 

investigations using carbon trackers in conjunction with a wider range of packages will allow 

for a better understanding of how compute power and data quality can be teased apart in 

order to identify the carbon footprint-optimised set of parameters that balance climate costs 

and scientific gains. We encourage these future investigations. 

Suggested Action: Only run the preprocessing and analysis steps that you need 

 

2.4. Time and location matters 

 

Periods of peak energy use put strain on a national grid’s available renewable energy 

and increase reliance on carbon-intensive sources in order to meet demand. Data from the UK 

National Grid ESO carbon intensity API (https://carbonintensity.org.uk), for example, reveals 

characteristic patterns of carbon intensity, with as much as 36.8% average decrease from 

peak to lowest point within a given day of the week (using available data from 2023). 

Available data from 2017 to 2023 can be seen in Figure 1 – with the average carbon intensity 

presented for each 30-minute period of each day of the week within a given year2. During the 

working week (Monday-Friday), predictable peaks occur at approximately 7:30-8am and 

6:30-7:30pm – preceding the start and following the end of the working day, when domestic 

energy use spikes. Carbon intensity is considerably lower overnight and on the weekend. This 

implies that carbon savings can be made by running analyses at times of lower carbon 

intensity. 

Unfortunately, live carbon intensity data is not publicly available for many countries 

(see https://app.electricitymaps.com for available sources). However, in cultures following a 

common 9-5 Monday-Friday working week, peaks and troughs of carbon intensity should 

approximately resemble those of the UK in Figure 1. When available, live data facilitates the 

 
2
 Changes in carbon intensity by month are not entirely consistent across years, see Supplementary Figure 1. 

https://osf.io/839pa
https://carbonintensity.org.uk/
https://app.electricitymaps.com/
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creation of automated job schedulers, which can schedule jobs to run at forecasted periods of 

low carbon intensity. One recent example is the Climate-Aware Task Scheduler (CATS; 

https://github.com/GreenScheduler/cats), which can be implemented in the UK for any HPC 

task. Institutions could take this initiative further by imposing user-specific ‘carbon budgets’ 

for research computing, in conjunction with task schedulers. While such a move may be 

controversial among HPC users, this could incentivise researchers to be more mindful in their 

computing, including the use of scheduling when possible. 

The data in Figure 1 should also provide cause for optimism. The transition from 

2017 to 2023 reflects an overall reduction in mean carbon intensity in the UK energy mix of 

46.4%3. Continuing adoption of renewable energy should see this trend continue within the 

UK. However, given there is a limit to renewable infrastructure that can be created, and that 

many other aspects of society need to be electrified (e.g., transport), the overall amount of 

energy available for research computing in a renewably-powered world will still be limited. 

 

 
Figure 1. Mean carbon intensity of UK electricity supply for each 30-minute period of the week, split 

by year from 2017 to 2023. Data taken from the public UK National Grid ESO carbon intensity API 

(https://carbonintensity.org.uk). Data for 2017 is only available from September 26th to the end of the 

calendar year. Data for 2023 is presented from the start of the calendar year to October 31st. 

gCO2/kWh = grams of carbon dioxide per kilowatt hour 

 

 
3
 At time of writing, data is not available for all of 2017 or 2023. The equivalent reduction from 2018 to 2022 is 

26.3%. 

https://github.com/GreenScheduler/cats
https://carbonintensity.org.uk/
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Carbon intensity also depends on the location in which computing occurs, because 

energy grids of countries and regions differentially employ carbon-intensive and renewable 

energy sources. As seen in Figure 2, there is considerable variation in carbon intensity both 

between and within countries – Iceland’s carbon intensity is 0.01% that of South Africa, due 

to greater reliance on geothermal-/hydro- and coal-powered energy, respectively. Often, it 

will be difficult for neuroimagers to adjust the location in which computing is done, as 

researchers may be tied to the physical location of institutional servers. This becomes more 

tractable when considering cloud computing services, which may house servers in more or 

less carbon intensive areas. When storing and sharing data, researchers may choose to 

prioritise data repositories supported by servers in areas with low carbon intensity. However, 

researchers should remain cognisant of the implications of their choices in terms of, for 

example, any socio-political issues associated with where data centres are constructed, and 

any ramifications on local areas and/or communities. Well thought-through and equitable 

international inter-institutional collaborations may be critical in providing researchers in low- 

and middle-income countries with access to low carbon intensity computing opportunities 

(Lannelongue et al., 2023). Overall, by scheduling preprocessing or analysis to run at periods 

or in locations of low carbon intensity, you could emit considerably less carbon while using 

the same amount of energy.  

Suggested Action: Run your computing at lower carbon intensity times and in lower 

carbon intensity locations 
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(a) – Countries of the world 

 

(b) – US states 

 
 

(c) – Canadian provinces 

 

(d) – Australian states 

Figure 2. The carbon intensity of energy supply for (a) countries of the world, (b) US states, (c) 

Canadian provinces, and (d) Australian states. Data taken from the 2022 v1.0 release of Country 

Specific Electricity Factors (2022) from www.carbonfootprint.com. All available data from this report 

is plotted. Dotted line reflects the average of countries/states/provinces within each graph. 

gCO2e/kWh = grams of carbon dioxide equivalent per kilowatt hour. US = United States. DKIS = 

Darwin Katherine Interconnected System, NWIS = North Western Interconnected System, SWIS = 

South West Interconnected System4 

 

 
4
 Note that exact estimates of carbon intensity vary by source, there is disparity between numbers presented here 

and those provided by Our World in Data (https://ourworldindata.org/grapher/carbon-intensity-electricity), 

although the rank order of countries by intensity across sources is comparable. 

http://www.carbonfootprint.com/
https://ourworldindata.org/grapher/carbon-intensity-electricity
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2.5. Tidy up ‘junk’ files 

 

Energy is not only required to process data, but also to store it. Increasing the amount 

of data stored on a server can impact workload, by providing a larger amount of material to 

backup, for instance. The mere storage of data also incurs energy consumption due to the 

requirement for powering hard drives and air conditioning in server rooms. The more we 

store, the greater the energy consumption. Additionally, as institutions run out of space to 

store data, it becomes necessary to acquire additional hardware. Even before servers are in 

use, the production of computing hardware contributes a substantial portion of the carbon 

impact for this sector, 15-40% for data centre servers5, and 70-90% for consumer devices 

(Clément et al., 2020). Overall, 10 kg of CO2-equivalent is the order of magnitude of the 

carbon footprint of each terabyte of data stored on a hard drive (Lannelongue et al., 2021).  

It is common for neuroimaging pipelines to produce large amounts of intermediary 

files that will never be used by the researcher. This includes files generated both in working 

directories and for the final output. For the aforementioned preregistered study 

(https://osf.io/839pa), we have been processing data for 257 subjects in fMRIPrep. For a 

single pipeline, fMRIPrep generated a total average of 5.55 GB per subject (across output 

files, working directories, and logs). Only 0.23 GB, 4.0% of the total size, corresponded to 

files intended for use in subsequent statistical analysis (see Figure 3). To address this 

unnecessary output, we provide an open source tool, fMRIPrepCleanup, available for 

download on GitHub (https://github.com/NickESouter/fMRIPrepCleanup), designed to delete 

unnecessary fMRIPrep files within a given directory. Using such automated scripts to 

cleanup junk files can place less stress on existing storage infrastructures and reduce the need 

for additional server purchases and manufacturing. However, extreme care should be taken 

when writing and executing such scripts, including the one linked here. They will need to be 

customised based on the research needs of the user and the output file structure they have 

created. If the overarching directory and file paths to be saved are not correctly specified, you 

risk irrevocably deleting important data. We recommend executing such a script on a copy of 

one participant’s dataset first, and using the Brain Imaging Data Structure (BIDS) file 

organizational structure (Gorgolewski et al., 2016) to make it easier to index files that are to 

be kept and deleted as appropriate. It is typically more energy-intensive to regenerate files 

 
5
 https://www.dell.com/en-uk/dt/corporate/social-impact/advancing-sustainability/climate-action/product-

carbon-footprints.htm#scroll=off&tab0=3 

https://osf.io/839pa
https://github.com/NickESouter/fMRIPrepCleanup
https://www.dell.com/en-uk/dt/corporate/social-impact/advancing-sustainability/climate-action/product-carbon-footprints.htm#scroll=off&tab0=3
https://www.dell.com/en-uk/dt/corporate/social-impact/advancing-sustainability/climate-action/product-carbon-footprints.htm#scroll=off&tab0=3
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than it is to store them. As such, files should only be deleted following an evaluation of 

exactly what will need to be retained, in order to avoid unnecessary repetition. 

Suggested Action: Regularly remove files that you do not need 

 

 
 

Figure 3. The mean percentage of total data generated by fMRIPrep that is actively used in 

data analysis (solid green) versus files that can be safely deleted after the completion of 

preprocessing (chequered). Data corresponds to preprocessing of one run of a stop signal 

task for 257 subjects (Bilder et al., 2020; 

https://openneuro.org/datasets/ds000030/versions/1.0.0), and includes working directory 

files, derivatives, logs, and figures. GB = gigabytes 

 

2.6. Plan your long-term storage 

 

As well as making efforts to delete unneeded files, researchers should consider the 

method and duration of storage of files that do have value. As covered in Recommendation 5, 

the long-term storage of files has a carbon footprint. Researchers in computationally 

expensive fields such as neuroimaging can explicitly consider the carbon footprint 

implications of data storage in data management plans prior to beginning a study, as outlined 

by the Digital Humanities Climate Coalition (DHCC Information, Measurement and Practice 

Action Group, 2022; https://sas-dhrh.github.io/dhcc-toolkit). Many institutions have policies 

requiring researchers to retain data on local storage for a minimum time period; these are 

sometimes specific in scope (e.g., ten years) or are sometimes vague and unspecified (Briney 

https://openneuro.org/datasets/ds000030/versions/1.0.0
https://sas-dhrh.github.io/dhcc-toolkit
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et al., 2015; e.g., that data should be retained for an ‘appropriate’ period of time, as judged by 

the researcher). It is unclear what typically happens to data after such a retention period. 

Although there may be an implicit assumption that researchers delete data after this period, 

they may not do so without explicit encouragement. This can contribute to the accumulation 

of ‘dark data’ that is poorly indexed or simply unneeded, and therefore becomes functionally 

invisible and unused while taking up space (Schembera & Durán, 2020). Here, institutional 

research technicians or administrators could play a vital role in prompting researchers to 

regularly remove files that are no longer needed or within the retention period. Having 

recommended options for data at the end of a project’s life cycle would help avoid the 

accumulation of dark data. For neuroimagers concerned about permanently losing access to 

data, transitions from digital disk storage to long term tape storage may provide substantial 

savings in both storage costs and carbon emissions (Johns, 2020), as tape storage does not 

require energy to air condition servers or cover baseload. Researchers could consider utilising 

offline or solid storage for their data unless they have specific reasons not to do so. 

Suggested Action: Plan where, and for how long, you will store files, aided by 

research technicians 

 

2.7. Push for publicly owned centralised data storage 

 

Centralised data storage avoids the duplication of datasets in each research group and 

benefits the research community as well as the environment. General open science 

repositories such as the OSF (https://osf.io), and neuroimaging-specific platforms such as 

Neurovault (https://neurovault.org) and OpenNeuro (https://openneuro.org), allow 

neuroimagers to provide public access to raw and processed neuroimaging data. This practice 

has helped make neuroimaging research more credible, reproducible, and accessible 

(Gorgolewski & Poldrack, 2016). Although larger data centres tend to be more energy 

efficient than decentralised small data storage infrastructures (Masanet et al., 2020), it is 

important to assess the carbon footprint of these facilities when building such centralised 

storage resources. Moreover, these repositories rely on commercial cloud computing services. 

For instance, data for OSF are hosted by Google, and data for OpenNeuro are hosted by 

Amazon Web Services. Some researchers may perceive ethical issues with entrusting public 

medical data to such commercial platforms – including issues surrounding privacy and data 

https://osf.io/
https://neurovault.org/
https://openneuro.org/
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security, and ownership and control (Chiruvella & Guddati, 2021). BigTech is also associated 

with producing and amplifying a range of social injustices and inequalities (Couldry & 

Mejias, 2018). Besides, claims made by large cloud providers around renewable energy and 

sustainability can be difficult to verify – transparency on this matter is not always evident. 

Such concerns may be addressed through the use of publicly owned, non-commercial 

‘trusted research environments’ (TRE), which allow secure access to large amounts of 

medical data (Graham et al., 2022), and are run for, and by, the research community. When 

operating at a large scale, such services can also have power use effectiveness comparable to 

that of commercial services. The European High Performance Computing Joint Undertaking 

(EuroHPC JU) provides a promising example of a non-commercial approach 

(https://eurohpc-ju.europa.eu). For example, one EuroHPC JU initiative, LUMI in Finland, 

reportedly ranks as one of the most energy-efficient supercomputers in the world while also 

being fully powered by renewable hydroelectric energy6. When considering data storage, 

non-commercial solutions such as this may provide an optimal balance between computing 

power, energy efficiency, and transparency. While the power of individual neuroimagers in 

this sense is limited, researchers can help here by advocating for and supporting the use of 

non-commercial computing initiatives and TREs. 

Suggested Action: Advocate for non-commercial and centralised data storage 

solutions 

 

2.8. Reflect on what needs to be shared 

 

In a recent survey of neuroimaging researchers, 54% indicated that they were likely to 

share all raw imaging data in online repositories for their next project (Paret et al., 2022). 

This demonstrates an impressive commitment from much of the neuroimaging community to 

transparent and accountable science. When doing so, researchers should ensure that the data 

they share is FAIR – findable, accessible, interoperable, and reusable (Wilkinson et al., 

2016). These principles are often not adhered to (Crüwell et al., 2023), and sharing of 

unFAIR data may in some cases be worse than sharing nothing. Access to all data for a 

project can significantly enhance the utility of a dataset. However, as the demands on the ICT 

 
6
 https://eurohpc-ju.europa.eu/eurohpc-supercomputers-are-still-among-fastest-and-greenest-2023-05-22_en 

https://eurohpc-ju.europa.eu/index_en
https://eurohpc-ju.europa.eu/eurohpc-supercomputers-are-still-among-fastest-and-greenest-2023-05-22_en
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sector continue to grow, data centres will require more energy and space to operate (Freitag et 

al., 2021; although see Masanet et al., 2020 for an opposing view). This will also manifest as 

increased costs to data sharing platforms7. Even technological improvements in cloud 

computing may elicit a rebound effect, whereby increasingly efficient data storage actually 

leads to net increases in demand and therefore storage space and energy used (Widdicks et 

al., 2023). For their part, researchers should consider which aspects of their data will 

realistically be necessary or helpful to share. In most cases, it may be sufficient to upload 

preprocessed data only – enough to replicate analysis and test novel hypotheses, while 

placing minimal strain on cloud computing. Additionally, sharing too much can make it 

harder for users to navigate and correctly use datasets. We are not advocating against the 

sharing of data. However, exponential increases in the amount of existing data may make it 

necessary to ask difficult questions. Ultimately, it may be wise for researchers, institutions, or 

data sharing platforms to place expiration dates on datasets, with removal after a set period. 

For now, researchers can exercise their own best judgement on the balance between the 

usefulness and size of their public data. Neuroimagers may benefit from the publication of a 

consensus paper, providing guidelines for sharing imaging data with sufficient rigour while 

also considering greener computing. 

Suggested Action: Publicly share sufficient data to ensure it is FAIR (Findable, 

Accessible, Interoperable, Reusable), but consider the extent of what others will actually 

need or use 

 

2.9. Use existing data 

 

In neuroimaging investigations, the default approach is to design a novel paradigm 

and collect raw data from a novel sample. Making use of pre-existing, and often preprocessed 

data which is already suitable for statistical analysis, allows one to save time and resources, 

and importantly to avoid the energy use associated with processing novel data (a 

computationally expensive process, see Recommendation 3; Rae et al., 2022). This will only 

apply when the data necessary to answer a research question already exists, and is publicly 

available (see Recommendation 8). Large public datasets for research use include the Human 

 
7
 https://www.cos.io/blog/shared-investment-in-osf-sustainability 

https://www.cos.io/blog/shared-investment-in-osf-sustainability
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Connectome Project (https://www.humanconnectome.org; Van Essen et al., 2013), which 

incorporates multimodal datasets across young adult, developmental, ageing, and clinical 

samples. These contain task-based fMRI, resting-state fMRI, MEG, and PET data. Similarly, 

UK Biobank is a mass-scale study comprising diverse phenotypic and genotypic data, 

including structural, diffusion, and functional MRI (https://www.ukbiobank.ac.uk; Miller et 

al., 2016). As of October 2022, over 60,000 volunteers have been imaged, with a target of 

100,000 individuals in the final sample8. This data is used to generate over 4,000 imaging-

derived phenotypes – metrics such as structure volume and connectivity that can be used as 

predictors of disease risk factor (Alfaro-Almagro et al., 2018). Note that this platform does 

not offer free access to its data, meaning it is not an entirely accessible public resource. 

Alternatively, the platform OpenNeuro provides free access to over 800 public datasets 

spanning MRI, fMRI, PET, MEG, EEG, and iEEG data (https://openneuro.org). Other open 

data repositories are listed in Table 19. When possible, the re-use of existing data provides a 

good example of how open science practices can intersect with opportunities to reduce one’s 

personal compute emissions. 

Suggested Action: Make use of existing preprocessed data when possible, instead of 

acquiring and processing new data 

 

 
8
 https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/world-s-most-ambitious-imaging-study-

scans-60-000th-participant 
9
 As presented in this table, there are issues here with the diversity of data – all projects found are based in the 

US or Europe. All sources appear free to access, with the exception of UK Biobank. 

https://www.humanconnectome.org/
https://www.ukbiobank.ac.uk/
https://openneuro.org/
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/world-s-most-ambitious-imaging-study-scans-60-000th-participant
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/world-s-most-ambitious-imaging-study-scans-60-000th-participant
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Table 1. Overview of open access neuroimaging projects/data repositories, with available links, modalities, countries of origin, dataset sizes, and 

brief descriptions 

Project Link 
Imaging 

modalities 
Based in 

Dataset size 

(participants) 
Description 

A large and rich EEG dataset 

for modeling human visual 

object recognition 

https://figshare.com/articles/dataset/

A_large_and_rich_EEG_dataset_for

_modeling_human_visual_object_re

cognition/18470912 

EEG Germany 10 

Contains EEG data for responses to images of objects on a 

natural background. Ten participants each with a large 

number of trials. 

Adolescent Brain Cognitive 

Development (ABCD) study 
https://abcdstudy.org 

MRI, fMRI, 

dMRI 
US 11,880 

A large long-term study of brain development and child 

health. 

Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) 
https://adni.loni.usc.edu MRI, PET US 

800 (ADNI 1) 

507 (ADNI 2) 

A longitudinal multicenter study designed to develop 

biomarkers for the early detection of Alzheimer’s disease. 

Amsterdam Open MRI 

Collection (AOMIC) 

https://openneuro.org/datasets/d

s002785/versions/2.0.0 

MRI, fMRI, 

dMRI 
Netherlands 216 

Multiple large datasets containing data for various task-based 

fMRI paradigms, psychometrics, and demographics. 

Autism Brain Imaging Data 

Exchange (ABIDE) 

https://fcon_1000.projects.nitrc.

org/indi/abide 
MRI, fMRI, DTI US/Europe 

1,112 (ABIDE 1) 

1,000+ (ABIDE 2) 

Aggregates data from institutions around the world to further 

our understanding of the neural bases of autism. 

Cambridge Centre for Ageing 

and Neuroscience (Cam-CAN) 
https://www.cam-can.org 

MRI, DTI, DKI, 

MEG, fMRI 
UK 

623-653 (varies by 

imaging modality) 

A large collaborative project, focused on how individuals can 

retain cognitive abilities into old age. 

Enhanced Nathan Kline Institute 

- Rockland Sample (NKI-RS) 

https://fcon_1000.projects.nitrc.

org/indi/enhanced 
MRI, fMRI US 1,000+ 

A large community sample of participants across the 

lifespan, contains diverse data types. 

ERP CORE https://erpinfo.org/erp-core EEG US 40 
Contains event related potential data for six paradigms 

relating to different components. 

Human Connectome Project 

(HCP) 

https://www.humanconnectome.

org 

MRI, fMRI, 

MEG, PET 
US 

1,200 (Young Adult) 

1,200 (Aging) 

1,350 (Development) 
500 (Lifespan Baby) 

1,500 (Lifespan Developing) 

Various clinical patient 
datasets 

Contains multiple large datasets spanning different age 

groups across diverse tasks. 

Imaging and Data Archive 

(IDA) 
https://ida.loni.usc.edu 

MRI, CT, 

SPECT, PET, 

EEG 

US 
Signposts 150 studies; 

95,100 participants 

A resource for archiving and signposting neuroscience data 

repositories, including some of those listed here. 

International Neuroimaging 

Data-Sharing Initiative (INDI) 

http://fcon_1000.projects.nitrc.o

rg 
MRI, fMRI US 1,200+ 

Includes a public release of resting-state fMRI datasets from 

33 sites. 

MEG UK https://meguk.ac.uk/database MEG, MRI UK ~500 (prospective) 
A partnership between eight UK labs, adding towards a 

single shared repository of MEG data. 

Mother of Unification Studies 

(MOUS) 
https://data.donders.ru.nl/collections

/di/dccn/DSC_3011020.09_236?0 

MRI, fMRI, 

MEG 
Netherlands 204 

Multimodal data, includes a language task and resting-state 

data. In BIDS format. 

https://figshare.com/articles/dataset/A_large_and_rich_EEG_dataset_for_modeling_human_visual_object_recognition/18470912
https://figshare.com/articles/dataset/A_large_and_rich_EEG_dataset_for_modeling_human_visual_object_recognition/18470912
https://figshare.com/articles/dataset/A_large_and_rich_EEG_dataset_for_modeling_human_visual_object_recognition/18470912
https://figshare.com/articles/dataset/A_large_and_rich_EEG_dataset_for_modeling_human_visual_object_recognition/18470912
https://abcdstudy.org/
https://adni.loni.usc.edu/
https://openneuro.org/datasets/ds002785/versions/2.0.0
https://openneuro.org/datasets/ds002785/versions/2.0.0
https://fcon_1000.projects.nitrc.org/indi/abide
https://fcon_1000.projects.nitrc.org/indi/abide
https://www.cam-can.org/
https://fcon_1000.projects.nitrc.org/indi/enhanced
https://fcon_1000.projects.nitrc.org/indi/enhanced
https://erpinfo.org/erp-core
https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://ida.loni.usc.edu/login.jsp
http://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/
https://meguk.ac.uk/database
https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0
https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0
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Multisubject, multimodal face 

processing 

https://openneuro.org/datasets/d

s000117/versions/1.0.3 

MRI, fMRI, 

MEG, EEG 
UK 16 

A multimodal dataset focused on face processing conducted 

over two sessions. In BIDS format. 

Natural Scenes Dataset (NSD) http://naturalscenesdataset.org 
Ultra high-field 

7T MRI, fMRI 
US 8 

Data for eight participants, viewing thousands of colour 

natural scenes over 30-40 scans. 

Neurosynth https://neurosynth.org fMRI US 
Aggregates existing 

results 

Allows for the automatic synthesis of existing fMRI data for 

studies focusing on a given topic or function. Produces 

statistical maps of activation. 

Neurovault https://neurovault.org 
MRI, fMRI, 

PET 
US Many separate datasets 

A public repository of unthresholded statistical maps derived 

from neuroimaging studies.  

Open Access Series of Imaging 

Studies (OASIS) 
https://www.oasis-brains.org 

MRI, fMRI, 

DTI, PET 
US 

416 (OASIS-1) 

150 (OASIS-2)  
1,379 (OASIS-3) 

451 (OASIS-3_TAU) 

663 (OASIS-4) 

A project aimed at making neuroimaging datasets freely 

available for download. Contains five distinct datasets 

largely focused on ageing and dementia. 

OpenNeuro https://openneuro.org 

MRI, fMRI, 

PET, MEG, 

EEG, iEEG 

US 800+ datasets 
A free platform that provides access to over 800 public 

datasets, all BIDS-compliant. Formerly ‘OpenfMRI’. 

Release of cognitive and 

multimodal MRI data 

including real-world tasks and 

hippocampal subfield 

segmentations 

https://datadryad.org/stash/datas

et/doi:10.5061/dryad.2v6wwpzt

3 

MRI, dMRI, 

fMRI,   
UK 217 

Extensive cognitive assessment and neuroimaging data for a 

neurologically healthy sample. Aimed at understanding 

neural bases of individual difference, particularly in the 

hippocampus. 

StudyForrest http://www.studyforrest.org 
MRI, fMRI, 

dMRI 
Germany 20 

A project centering around the movie Forrest Gump, 

providing highly reproducible scanning of rich contexts. 

UK Biobank https://www.ukbiobank.ac.uk 
MRI, fMRI, 

dMRI, IDP 
UK 60,000+ 

A biomedical database containing data from UK participants. 

The world’s largest imaging study. 

Note: This list is not exhaustive. MRI = magnetic resonance imaging, fMRI = functional MRI, dMRI = diffusion MRI, PET = positron emission tomography, MEG = 

magnetoencephalography, IDP = imaging-derived phenotypes, EEG = electroencephalography, iEEG = intracranial EEG, CT = computerised tomography, SPECT = single-

photon emission CT , DTI = diffusion tensor imaging, DKI = diffusion kurtosis imaging, US = United States, UK = United Kingdom, BIDS = brain imaging data structure. 

Other lists of neuroimaging databases are available (e.g., https://en.wikipedia.org/wiki/List_of_neuroscience_databases; https://imaging.mrc-

cbu.cam.ac.uk/methods/OpenDatasets; https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html) 

  

https://openneuro.org/datasets/ds000117/versions/1.0.3
https://openneuro.org/datasets/ds000117/versions/1.0.3
http://naturalscenesdataset.org/
https://neurosynth.org/
https://neurovault.org/
https://www.oasis-brains.org/
https://openneuro.org/
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2v6wwpzt3
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2v6wwpzt3
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2v6wwpzt3
http://www.studyforrest.org/
https://www.ukbiobank.ac.uk/
https://en.wikipedia.org/wiki/List_of_neuroscience_databases
https://imaging.mrc-cbu.cam.ac.uk/methods/OpenDatasets
https://imaging.mrc-cbu.cam.ac.uk/methods/OpenDatasets
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
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2.10. Talk about greener computing 

 

When we talk to neuroimaging colleagues about greener computing, many say they 

have not previously considered the carbon emissions associated with this aspect of the 

research process. This carbon footprint is perhaps challenging to intuitively conceptualise, 

compared to more visible sources of carbon emissions such as aviation. However, by 

reflecting on the above recommendations and actively discussing them with your 

neuroimaging community, you can raise awareness about this issue. In recent years, we have 

been inspired by increasing engagement on environmental sustainability issues within the 

neuroscience community, from conference attendance and participation in green 

neuroscience- and computing-themed sessions (e.g., British Neuroscience Association 2021, 

‘Environmental impacts of computing in health & life sciences research’ workshop 2023), to 

environmental chapters within neuroscience societies (e.g., the Sustainability and 

Environment Action Special Interest group in the Organization for Human Brain Mapping). 

As with recent drives for open science practices (Gorgolewski & Poldrack, 2016) and 

equitable publication costs (Sanderson, 2023) within this community, there is an appetite 

amongst neuroimagers to be more environmentally conscious in their work. Neuroimagers 

can – and we believe should – exercise advocacy in their own work, challenging established 

norms that exacerbate the footprint of the field.  

Individual researchers may feel that their actions have a negligible impact on net 

emissions. However, fostering a culture of thinking seriously about these issues will 

contribute to the implementation of ideas into standard practice, as we have seen with the 

open neuroimaging movement. Systemic change from governments, institutions, and funders 

will be critical in facilitating this change. Alongside this, however, researchers should take 

small steps in their own work when possible. This can include the implementation of novel 

practices, such as ‘Environmental impact statements’ (see Recommendation 2), HPC task 

scheduling, and carbon budgets (see Recommendation 4). We call on all neuroimagers to 

actively consider the carbon footprint of their work, especially that derived from computing, 

where there are already meaningful steps that can be taken. 

Suggested Action: Discuss the importance of greener computing with other 

neuroimagers and advocate for systemic change 

https://www.youtube.com/watch?v=cGgwXmMiGLU
https://www.eicworkshop.info/
https://ohbm-environment.org/
https://ohbm-environment.org/


23 

 

3. Conclusion 

 

We have discussed 10 ways in which neuroimagers can reduce the carbon footprint of 

their research computing. As data literate individuals in positions of power, with the ability to 

influence the use of research funding, scientists have an obligation to consider the impact of 

their work. When working with large amounts of data, neuroimagers should reflect on how 

efficiently this data is processed, stored, and shared. We hope that the recommendations 

outlined here will help to foster a culture of addressing the environmental impacts of 

neuroimaging research computing. 

  



24 

Data and Code Availability 

 

Raw data for Figure 1 and Figure 2 and are available through the sources cited in the 

respective figure headers. All processed data used to generate figures for this paper, and the code 

used to process them, are publicly available on the Open Science Framework (Souter, 2023; 

https://osf.io/kq9ue). 
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